

Программа дополнительного образования

Программа дополнительного профессионального образования

Программа повышения квалификации

«Практические аспекты хроматографии, хроматомасс-спектрометрии»

РАЗРАБОТАНО

Директор по научно-техническому развитию

И.Л. Гринштейн

Руководитель Учебного центра

И.С. Муратова

УТВЕРЖДЕНО

Генеральный директор

000 «Аналит Продактся

М. Краева

Приказ «09» января 2019ф

Программа дополнительного образования

Программа дополнительного профессионального образования

Программа повышения квалификации

«Практические аспекты хроматографии, хроматомасс-спектрометрии»

Дополнительная профессиональная программа повышения квалификации «Практические аспекты хроматографии, хроматомасс-спектрометрии» разработана руководителем Учебного центра Общества с ограниченной ответственностью «Аналит Продактс» (далее – Общество) по согласованию с директором по научно-техническому развитию Общества. Настоящая образовательная программа утверждена генеральным директором Общества.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Нормативные документы для разработки дополнительной профессиональной программы повышения квалификации

Образовательная программа дополнительного профессионального образования повышения квалификации «Практические аспекты хроматографии, хроматомасс-спектрометрии» разработана на основе следующих нормативных документов:

- Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- Приказ Министерства образования и науки Российской Федерации от 01.07.2013 № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам»;
- Квалификационный справочник должностей руководителей, специалистов и других служащих, утвержденным Постановлением Минтруда России от 21.08.1998 № 37.

Образовательная программа дополнительного профессионального образования повышения квалификации оформлена в соответствии с требованиями:

- статьи 12 Федерального закона «Об образовании в Российской Федерации».
- приказа Минобрнауки России от 01.07.2013 № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам».

1.2. Цель повышения квалификации

Целью образовательной программы дополнительного профессионального образования – программы повышения квалификации является совершенствование и актуализация компетенций, необходимых для профессиональной деятельности в рамках имеющейся квалификации сотрудников исследовательских, производственных, аналитических, химико-аналитических, спектральных, хроматографических, ветеринарных лабораторий, специалистов в области аналитической химии, проводящих анализы и испытания, а также лиц, получающих среднее профессиональное образование и (или) высшее образование в данных отраслях науки, знакомство с новыми видами современных лабораторных исследований, инструментального химического анализа, и технологиями работы с ними, по следующим должностям, но не ограничиваясь:

- начальник исследовательской лаборатории (код 22016 ОК 016-94),
- начальник производственной лаборатории (код 24845 ОК 016-94),
- инженер-лаборант (код 22497 ОК 016-94),
- инженер (код 22446 ОК 016-94),
- научный сотрудник (код 24376, 24394, 24395, 24397 ОК 016-94),
- инженер-химик (код 22860 ОК 016-94),
- техник-лаборант (код 26999 ОК 016-94),
- лаборант (код 13265, 13269, 13271, 13306, 13312, 13319, 13321 ОК 016-94),
- инженер (код 22446, 42499 ОК 016-94),
- главный инженер (код 20755, 20758 ОК 016-94),
- инженер-лаборант (код 22497, 22602 ОК 016-94),
- инженер-технолог (код 22854 ОК 016-94),
- химик (код 27392 ОК 016-94),
- техник-метролог (техник по метрологии) (код 27012 ОК 016-94),

- инженер по охране окружающей среды (эколог) (код 22656 ОК 016-94)
- биохимик (код 20327 ОК 016-94),
- врач судебно-медицинский эксперт (код 20480 ОК 016-94).

Программа предназначена для дополнительного профессионального образования лиц, имеющих или получающих среднее профессиональное образование и (или) высшее образование.

1.3. Планируемые результаты освоения программы

Повышение квалификации работников, занимающих вышеперечисленные должности, направлено на совершенствование и актуализацию необходимых в их деятельности компетенций.

1. Общие компетенции:

• способность решать профессиональные задачи, проявлять инициативу, принимать оптимальные решения в повседневной деятельности и нестандартных ситуациях, нести за них ответственность.

2. Профессиональные компетенции:

- способность применять в профессиональной деятельности теоретические основы хроматографии и хроматомасс спектрометрии. Знать данные методы и применять их при проведении анализов;
- способность правильно и полно отражать результаты профессиональной деятельности при проведении анализов, получении результатов и проверки правильности измерений.

По результатам освоениям образовательной программы дополнительного профессионального образования – программы повышения квалификации «Практические аспекты хроматографии, хроматомасс-спектрометрии» слушатели должны:

- знать основы теории и основные понятия высокоэффективной жидкостной хроматографии (ВЭЖХ), газовой хроматографии и хроматомасс-спектрометрии; области применения хроматографии и хроматомасс-спектрометрии на практике; классификацию хроматографических методов по механизму разделения; основные принципы подбора условий разделения; сорбенты, используемые для заполнения хроматографических колонок, принципы их выбора; требования к используемым растворителям, реактивам и газам; основные узлы жидкостного, газового хроматографов и хроматомасс-спектрометра; применяемые детекторы; подходы к пробоподготовке образцов для хроматографического анализа; методы количественного анализа.
- уметь устанавливать механизм хроматографического разделения при работе по конкретной методике выполнения измерения; оптимизировать условия хроматографического разделения при решении практических задач; выбирать реактивы и материалы, подходящие для использования; выполнять количественный анализ.
- владеть техникой выполнения хроматографического эксперимента; навыками приготовления подвижных фаз и буферных растворов для ВЭЖХ; навыками выбора подходящих методик для выполнения практических задач; правилами эксплуатации хроматографических колонок (подготовка к работе, очистка, хранение); навыками подготовки образцов для хроматографического анализа; принципами проведения количественного анализа, использования стандартных образцов; техникой работы со стандартными веществами.

1.4. Нормативный срок освоения программы

Нормативный срок обучения — 2 учебных дня (16 академических часов) на базе полученного / получаемого высшего и (или) среднего профессионального образования.

Нормативный срок освоения программы: – 2 учебных дня (16 академических часов) из них:

- 15 лекционных часов,
- 1 час итоговая аттестация.

Режим занятий: 8 лекционных часов в 1-й день, на 2-й день - 7 лекционных часов и 1 час для итоговой аттестации.

2. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ

2.1. Требования к условиям реализации программы

Образовательная деятельность обучающихся предусматривает следующие виды учебных занятий и учебных работ: лекции, практические и семинарские занятия, лабораторные работы, круглые столы, мастер-классы, мастерские, деловые игры, ролевые игры, тренинги, семинары по обмену опытом, выездные занятия, консультации, выполнение аттестационной, дипломной, проектной работы и другие виды учебных занятий и учебных работ, определенные учебным планом.

Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

Освоение программы завершается итоговой аттестацией в форме тестовых заданий.

Лицам, успешно освоившим программу повышения квалификации и прошедшим итоговую аттестацию, выдаются документы о квалификации – удостоверение о повышении квалификации.

2.2. Информационное обеспечение образовательного процесса

Для обучающихся по настоящей программе повышения квалификации подготовлены лекционные и учебно-методические материалы на электронном носителе.

3. УЧЕБНЫЙ ПЛАН

Образовательная программа дополнительного профессионального образования — программы повышения квалификации «Практические аспекты хроматографии, хроматомассспектрометрии» предназначена для повышения профессионального уровня сотрудников исследовательских, производственных, аналитических, химико-аналитических, спектральных, хроматографических, ветеринарных лабораторий, специалистов в области аналитической химии, проводящих анализы и испытания, а также лиц, получающих среднее профессиональное образование и (или) высшее образование в данных отраслях науки, знакомство с новыми видами современных лабораторных исследований, инструментального химического анализа, и технологиями работы с ними, по следующим должностям, но не ограничиваясь:

- начальник исследовательской лаборатории (код 22016 ОК 016-94),
- начальник производственной лаборатории (код 24845 ОК 016-94),
- инженер-лаборант (код 22497 ОК 016-94).
- инженер (код 22446 ОК 016-94).
- научный сотрудник (код 24376, 24394, 24395, 24397 ОК 016-94).
- инженер-химик (код 22860 ОК 016-94),
- техник-лаборант (код 26999 ОК 016-94),
- лаборант (код 13265, 13269, 13271, 13306, 13312, 13319, 13321 ОК 016-94),
- инженер (код 22446, 42499 ОК 016-94),
- главный инженер (код 20755, 20758 ОК 016-94),
- инженер-лаборант (код 22497, 22602 ОК 016-94),
- инженер-технолог (код 22854 ОК 016-94),
- химик (код 27392 ОК 016-94).
- техник-метролог (техник по метрологии) (код 27012 ОК 016-94),
- инженер по охране окружающей среды (эколог) (код 22656 ОК 016-94)
- биохимик (код 20327 ОК 016-94),
- врач судебно-медицинский эксперт (код 20480 ОК 016-94).

УЧЕБНЫЙ ПЛАН

№ п/п	Наименование разделов и тем	Всего часов	Лекции		
	Раздел 1. Газовая хроматография				
1.1.	Основы метода. Классификация методов хроматографии	2	2		
1.2	Хроматографические материалы	2	2		
1.3	Аппаратурное использование хроматографического процесса	2	2		
1.4	Качественный и количественный анализ в газовой хроматографии	2	2		
1.5	Практические аспекты газовой хроматографии 2				
1.6	Самостоятельная работа 2				
Зсего	о по разделу:	12	10		
	Раздел 2. Жидкостная хроматография				
2.1.	Основы теории и основные понятия ВЭЖХ	2	2		
2.2	Классификация методов ВЭЖХ по механизму разделения	2	2		
2.3	Сорбенты для ВЭЖХ. Подвижная фаза для ВЭЖХ 2		2		
2.4	Основные принципы подбора условий разделения.	2	2		
2.5	Аппаратура для ВЭЖХ Качественный и количественный анализ. Особенности техники эксперимента в ВЭЖХ	2	2		
1.6	Самостоятельная работа	2	_		
Всего	по разделу:	12	10		
	Раздел 3. Хроматомасс-спектрометрия				
3.1	Теоретические основы метода.	2	2		
3.2	Конструкция хроматомасс-спектрометра	2	2		
3.3	Аппаратурное обеспечение метода	2	2		
3.4	Возможности программного обеспечения	2	2		
3.5	Использование хроматомасс-спектрометра с дополнительным оборудованием	2	2		
1.6	Самостоятельная работа	2	-		
Всего	по разделу:	12	10		

	Метрологическое обеспечение инструментальных методов налитической химии	2	2
Всего по разделу:		2	2
Всего по курсу обучения		38	32
Итоговая аттестация		_ 2	
(в форм	пе тестового задания)		
Итого:		40	

4. КАЛЕНДАРНЫЙ ГРАФИК УЧЕБНОГО ПРОЦЕССА

	1 день	2 день	3 день	4 день	5 день
Объем аудиторных часов	8	8	8	8	8
Теоретические занятия	8	8	8	8	6
Итоговая аттестация (в форме тестового задания)	-	-	-	-	2
Всего: 40 часов	8	8	8	8	8

<u>5. СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНЫХ ПРЕДМЕТОВ, КУРСОВ, ДИСЦИПЛИН (МОДУЛЕЙ)</u>

РАЗДЕЛ 1. ГАЗОВАЯ ХРОМАТОГРАФИЯ

Тема 1.1. Основы метода. Классификация методов хроматографии.

- Определение термина хроматография.
- Основные особенности газовой хроматографии.
- Принципы разделения веществ на хроматографических колонках.
- Классификация методов хроматографии по типам подвижной и неподвижной фаз.

Тема 1.2. Хроматографические материалы.

- Теоретические основы газохроматографического процесса.
- Принципы обработки хроматограмм.
- Терминология, принципы и характеристики хроматографического разделения компонентов.
- Факторы, влияющие на эффективную работу газохроматографической системы.
- Влияние температуры и скорости подвижной вазы на хроматографическое разделение.
- Примеры различных режимов.

Тема 1.3. Аппаратурное использование хроматографического процесса.

- Газ-носитель. Критерии выбора газа-носителя. Использование фильтров для газа-носителя.
- Критерии правильного использования газовой арматуры.
- Газовый редуктор. Принцип работы газового редуктора. Типы газовых редукторов и требования.
- Устройства ввода пробы.
- Инжектор. Типы инжекторов и принципы их работы. Примеры использования.
- Лайнеры. Критерии выбора лайнеров. Обзор возможных типов лайнеров.
- Газо-хроматографические колонки. Типы колонок. Адсорбенты. Носители для жидкой фазы. Неподвижные жидкие фазы. Критерии выбора насадочных колонок. Типы капиллярных колонок. Классификация капиллярных колонок по полярности. Критерии выбора капиллярных колонок.
- Детекторы в газовой хроматографии. Типы детекторов. Описание наиболее часто используемых детекторов. Параметры детекторов и факторы связанные с детектированием. Критерии выбора нужного детектора.
- Термостат колонок. Программирование температуры термостата колонок и оценка влияния.
- Быстрая газовая хроматография. Примеры использования.

Тема 1.4. Качественный и количественный анализ в газовой хроматографии.

- Методы идентификации компонентов пробы. Индексы удерживания Ковача.
- Методы количественного анализа. Метод абсолютной градуировки. Метод внутренней нормализации. Метод внутреннего стандарта.
- Проверка правильности используемых методов качественного и количественного газохроматографического анализа.

Тема 1.5. Практические аспекты газовой хроматографии.

- Отбор пробы.
- Пробоподготовка. Жидкость-жидкостная экстракция. Жидкостная экстракция с твердых матриц. Твердофазная микроэкстракция. Твердофазная экстракция.
- Принципы многомерной хроматографии. Устройства переключения потоков. Основы принципов работы двумерной хроматографии на примере схемы с использованием двух капиллярных колонок и краном-переключателем. Примеры используемых решений многомерной хроматографии.

РАЗДЕЛ 2. ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ

Тема 1.1. Основы теории и основные понятия ВЭЖХ.

- Понятие о высокоэффективной жидкостной хроматографии (ВЭЖХ).
- Принципы метода. Преимущества и особенности высокоэффективной жидкостной хроматографии.
- Применение высокоэффективной жидкостной хроматографии.

Тема 1.2. Классификация методов ВЭЖХ по механизму разделения.

- Принципы разделения, лежащие в основе основных режимов ВЭЖХ. Особенности и преимущества каждого режима.
- Подбор условий хроматографического разделения. Выбор режима хроматографирования в зависимости от молекулярной массы и химических свойств аналита.
- Способы регулирования хроматографического разделения. Влияние состава подвижной фазы на разделение.
- Примеры применения различных режимов.

Тема 1.3. Сорбенты для ВЭЖХ. Подвижная фаза для ВЭЖХ.

- Сорбенты, используемые в жидкостной хроматографии, принципы их выбора. Основные достоинства и недостатки используемых сорбентов. Способы их получения.
- Подвижные фазы, применяемые в ВЭЖХ. Требования к чистоте подвижных фаз. Способы подготовки подвижных фаз к использованию.
- Вспомогательные инструменты для подготовки подвижных фаз и образцов.

Тема 1.4. Подготовка образцов к ВЭЖХ анализу.

- Очистка от сопутствующих примесей и концентрирование.
- Твердофазная экстракция, выбор сорбентов в зависимости от свойств аналитов. Аппаратура для концентрирования и твердофазной экстракции.

Тема 1.5. Хроматографическая система.

- Основные узлы хроматографической системы.
- Насосы для ВЭЖХ, требования к ним.
- Детекторы. Выбор детектирования в зависимости от свойств анализируемых веществ.
- Соединительные элементы. Монтаж капилляров.
- Профилактическое обслуживание прибора. Промывка и хранение хроматографических колонок. Подготовка к хранению после работы с подвижными фазами, содержащими соли и кислоты. Очистка колонок при загрязнении.

Тема 1.6. Качественный и количественный анализ.

- Качественный анализ. Методы количественного анализа. Использование внутренних стандартов.
- Программное обеспечение для автоматической обработки полученных данных.
- Разметка хроматограммы для количественного анализа. Проверка правильности.

РАЗДЕЛ 3. ХРОМАТОМАСС-СПЕКТРОМЕТРИЯ

Тема 1.1. Теоретические основы метода.

- История масс-спектрометрии.
- Понятие о качественном и количественном анализе. Понятие о масс-спектрометрии.
 Принципы получения масс-спектров. Способы соединения жидкостного хроматографа и масс-спектрометра.
- Преимущества и особенности хроматомасс-спектрометрии.
- Применение хроматомасс-спектрометрии.

Тема 1.2. Конструкция хроматомасс-спектрометра.

• Жидкостная и газовая хроматомасс-спектрометрия.

- Различные типы жидкостных и газовых хроматомасс-спектрометров. Особенности различных приборов.
- Принципиальная схема хроматомасс-спектрометра.
- Система вакуумирования хроматомасс-спектрометра. Различные схемы применения вакуумных систем. Практические примеры.
- Интерфейс хроматомасс-спектрометра.
- Выбор хроматографической колонки для хроматомасс-спектрометра. Примеры использования различных колонок.
- Газ носитель для хромато-масс-спектрометрии. Критерии подбора. Особенности использования различных газов-носителей.
- Виды ионизации и принципы работы в газовой хроматомасс-спектрометрии.
- Зависимость величины ионного тока от энергии ионизирующих электронов.
- Виды ионизации и принципы работы в жидкостной хроматомасс-спектрометрии.
- Подвижные фазы для жидкостной хроматомасс-спектрометрии.
- Фокусировка ионов.
- Типы масс-фильтров.
- Тандемная масс-спектрометрия. Режимы работы масс-спектрометра с троойным квадруполем.
- Устройство детектора масс-спектрометра.
- Масс-спектры. Основная информация. Масс-спектры, полученные при различных типах ионизации.

Тема 1.3. Практические аспекты хроматомасс-спектрометрии.

- Электронная ионизация. Практическое применение.
- Практическое применение ионизации электроспреем и химической ионизации при атмосферном давлении.
- Виды съемки хроматомасс-спектра. Режимы работы по полному ионному току и по выбранным ионам.
- Способы идентификации компонентов.
- Принципы расшифровки масс-спектров без использования библиотек масс-спектров.
- Библиотеки масс-спектров.
- Возможности количественного определения на хроматомасс-спектрометре.

Тема 1.4. Использование хроматомасс-спектрометра с дополнительным оборудованием.

- Прямой ввод пробы в масс-спектрометр.
- Термодесорбция.
- Парофазное дозирование.

РАЗДЕЛ 4. МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ИНСТРУМЕНТАЛЬНЫХ МЕТОДОВ АНАЛИТИЧЕСКОЙ ХИМИИ.

РАЗДЕЛ 5. ПРОВЕДЕНИЕ ИТОГОВОЙ АТТЕСТАЦИИ В ФОРМЕ ТЕСТОВЫХ ЗАДАНИЙ ПО РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ.

6. ФОРМА ИТОГОВОЙ АТТЕСТАЦИИ

Контроль успеваемости обучающихся по Образовательной программе дополнительного профессионального образования — программе повышения квалификации «Практические аспекты хроматографии, хроматомасс-спектрометрии» — важнейшая форма контроля образовательной деятельности, включающая в себя целенаправленный систематический мониторинг освоения обучающимися программы повышения квалификации в целях:

- получения необходимой информации о выполнении обучающимися дополнительной профессиональной программы повышения квалификации;
- оценки уровня знаний, умений и приобретенных (усовершенствованных) обучающимися компетенций.

Итоговая аттестация проводится в соответствии с требованиями, установленными Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», приказом Минобрнауки России от 01.07.2013 № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам».

Освоение дополнительной профессиональной программы повышения квалификации завершается итоговой аттестацией (в форме тестового контроля).

К итоговой аттестации допускаются лица, выполнившие требования, предусмотренные курсом обучения по программе повышения квалификации и успешно прошедшие все промежуточные аттестационные испытания, предусмотренные учебным планом.

Итоговая аттестация проводится в сроки, предусмотренные учебным планом и календарным графиком учебного процесса.

Лицам, успешно освоившим программу повышения квалификации и прошедшим итоговую аттестацию, выдается документ о квалификации – удостоверение о повышении квалификации.

Лицам, не прошедшим итоговую аттестацию, а также лицам, освоившим часть программы повышения квалификации и (или) отчисленным в ходе освоения программы повышения квалификации, выдается сертификат об обучении или о периоде обучения.

7. <u>ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ - ПЕРЕЧЕНЬ ПЕЧАТНЫХ ОБРАЗОВАТЕЛЬНЫХ РЕСУРСОВ ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА</u>

Нормативные правовые акты:

- Конституция Российской Федерации (официальный текст). [Электронный ресурс]. URL:http://www.consultant.ru/.
- Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- Приказ Министерства образования и науки Российской Федерации от 01.07.2013 № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам»;
- Квалификационный справочник должностей руководителей, специалистов и других служащих, утвержденным Постановлением Минтруда России от 21.08.1998 № 37.

Основная литература:

- Guo X. (Ed.) Advances in Gas Chromatography AvE4EvA, 2014. 213 p.
- C. F. Poole Gas Chromatography Elsevier, 2012. 743 p.
- Elsa Lundanes ,Leon Reubsaet , Tyge Greibrokk Chromatography : Basic Principles, Sample Preparations and Related Methods, 2013. 224 p.
- O. David Sparkman, Zelda Penton , Fulton G. Kitson Gas Chromatography and Mass Spectrometry: A Practical Guide, 2011. 632 p.
- Roger-Marc Nicoud Chromatographic Processes: Modeling, Simulation and Design, 2015. 672 p.
- Lourdes Ramos Comprehensive Two Dimensional Gas Chromatography, 2011. 328 p.
- Ali Mohammad Green Chromatographic Techniques: Separation and Purification of Organic and Inorganic Analytes, 2016, 222 p.

8. ОСНАЩЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Лекционный зал № 218 «Балтика» в КЦ «Петроконгресс», расположенном по адресу: г. Санкт-Петербург, ул. Лодейнопольская, д. 5, лит.А.,, помещение № 218, 2 этаж, площадью 49 кв.м, оснащенный:

- ЖК панель Sony 46 1 шт.
- система звукоусиления встроенная 1 шт.
- микрофон Scnnheiser XS65 -1 шт.
- лекционный материал в электронном виде (диск)
- презентации по темам

9.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

9.1.ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ ДЛЯ ИТОГОВОЙ АТТЕСТАЦИИ

- Принципы, лежащие в основе хроматографического разделения. 1.
- 2. Классификация хроматографических методов.
- Основные хроматографические параметры, их физический смысл. 3.
- Что является количественной характеристикой содержания аналита. 4.
- Основные методы количественного анализа в хроматографии. 5.
- 6. Чем характеризуется эффективность хроматографической колонки?
- 7. Как получают наиболее качественные специфические сорбенты?
- Требования к подвижным фазам, используемым в хроматографическом анализе. 8.
- Механизмы разделения, применяемые в высокоэффективной жидкостной 9. хроматографии.
- Типы элюирования, применяемые в жидкостной хроматографии (изократическое и 10. градиентное).
- Какие сорбенты и элюенты используются в обращено-фазовом и нормально-фазовом 11. вариантах ВЭЖХ?
- Сорбенты, наиболее часто используемые в практике хроматографического анализа. 12.
- Размывание хроматографического пика и факторы, влияющие на него. Уравнение Ван-13. Деемтера.
- 14. Чем отличается газо-адсорбционная хроматография от газо-жидкостной?
- 15. Основы лигандообменной хроматографии.
- 16. Принципы ионообменной хроматографии.
- Сорбенты, элюенты, применяющиеся в жидкостной хроматографии. 17.
- Сущность механизма разделения в ион-парной хроматографии. 18.
- 19. Преимущества и особенности и хроматомасс-спектрометрии.
- 20. Применение хроматомасс-спектрометрии.
- Виды ионизации и принципы работы в газовой хроматомасс-спектрометрии. 21.
- 22. Типы масс-фильтров.
- 23. Устройство детектора масс-спектрометра
- Принципы расшифровки масс-спектров без использования библиотек масс-спектров. 24.
- 25. Библиотеки масс-спектров.

9.2. ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ ИТОГОВОЙ АТТЕСТАЦИИ

1. Что такое время удерживания? Это время ...

- а) от момента ввода смеси веществ до выхода последнего;
- б) от момента ввода анализируемой пробы до регистрации пика;
- в) интервал (в минутах) между пиками двух веществ;
- г) пребывания вещества в подвижной фазе;

2. Что является основой количественного анализа в методе абсолютной градуировки?

- а) построение градуировочного графика по стандартам;
- б) сравнение высот пиков стандарта и аналита;
- в) введение в аналит известного количества эталонного соединения и расчет по формуле после получения хроматограммы;

3. Какие параметры хроматографического пика используют для количественного анализа?

- а) площадь;
- б) высота и ширина;
- в) ширина на половине высоты;
- г) время выхода пика;

4. Площадь хроматографического пика характеризует ...

- а) качественный состав пробы;
- б) количественное содержание аналита;
- в) полноту разделения;
- г) расход подвижной фазы:

5. Какое требование не является обязательным для газа носителя?

- а) инертность к анализируемым веществам;
- б) высокая чистота:
- в) огнестойкость;
- г) отсутствие сигнала на детекторе;

6. Каким параметром характеризуется эффективность хроматографической колонки?

- а) числом теоретических тарелок;
- б) селективностью;
- в) временем удерживания вещества;

7. Что служит качественной характеристикой определяемых веществ?

- а) число теоретических тарелок;
- б) время удерживания;
- в) разрешение между пиками;
- г) относительное время удерживания;

8. Что используют наиболее часто в качестве подвижной фазы в газовой хроматографии?

- а) полярные растворители;
- б) неполярные растворители;
- в) инертные газы;
- г) углекислый газ:

9. В газожидкостной хроматографии неподвижной фазой является

- а) сорбент:
- б) жидкость;
- в) ионообменная смола;

10. Эффективность колонки выражается визуально ...

- а) остротой пика:
- б) присутствием пиков-наездников;
- в) хроматографическим размыванием;
- г) наложением хроматограмм веществ А и В;

11. Какое преимущество дает программирование температуры в газовой хроматографии?

- а) ускоряет анализ;
- б) повышает точность;
- в) повышается возможность разделения сложной смеси веществ;
- г) нет преимуществ;

12. Площадь хроматографического пика пропорциональна...

- а) концентрации аналита;
- б) времени удерживания;
- в) скорости подвижной фазы;
- г) числу теоретических тарелок;

13. Что служит основой разделения в газожидкостной хроматографии?

- а) различие в температурах кипения аналитов;
- б) агрегатное состояние вещества;
- в) размеры частиц сорбента;
- г) использование в качестве подвижной фазы газа;

- 14. Какие требования предъявляются к жидкой фазе в газожидкостной хроматографии? Она должна быть ...
- а) водорастворимой;
- б) термически устойчивой до 300° С;
- в) неполярной;
- г) летучей при 150° С;
- 15. Что отличает газо-адсорбционную хроматографию от газожидкостной?
- а) аппаратурное оформление;
- б) объекты анализа;
- в) механизм разделения;
- г) время анализа;
- 16. Для веществ, имеющих молекулярную массу более 2000 а.е. используется следующий механизм разделения:
- а) обращено-фазовый;
- б) эксклюзионный;
- в) ионообменный.
- 17. Какие требования предъявляются к объекту анализа, чтобы его можно было проанализировать методом жидкостной хроматографии:
- а) должен растворяться в подвижной фазе;
- б) компоненты образца обратимо взаимодействуют с неподвижной фазой колонки;
- в) аналит должен иметь температуру кипения выше 100° С.
- 18. Градиентное элюирование основано на применении
- а) подвижных фаз с изменяющимся составом;
- б) высокого давления;
- в) органических растворителей (элюентов);
- 19. В нормально-фазовой распределительной хроматографии
- а) сорбент полярный, а элюент неполярный;
- б) сорбент неполярный, а элюент полярный;
- в) сорбент и элюент полярные;
- г) сорбент и элюент неполярные;
- 20. Наиболее распространенным механизмом разделения ВЭЖХ является:
- а) нормально-фазовый;
- б) ионообменный;
- в) обращено-фазовый;
- г) эксклюзионный;
- 21. Укажите метод, не относящийся к методам количественного определения
- а) метод нормализации площадей;
- б) метод внутреннего стандарта;
- в) применение веществ-тесторов;
- г) метод абсолютной градуировки.