

Программа дополнительного образования

Программа дополнительного профессионального образования

Программа повышения квалификации

«Атомно-абсорбционный анализ: основы метода, техника выполнения измерений, практикум»

РАЗРАБОТАНО

Директор по научно-техническому развитию

И.Л. Гринштейн

Руководитель Учебного центра

Л.А. Васильева

УТВЕРЖДЕНО

Генеральный директор аниченно

ООО «Аналит Продакте»

Г.И. Краева

Приказ « 10» май 2021 г. № 05/21-П

Программа дополнительного образования

Программа дополнительного профессионального образования

Программа повышения квалификации

«Атомно-абсорбционный анализ: основы метода, техника выполнения измерений, практикум»

Дополнительная профессиональная программа повышения квалификации «Атомно-абсорбционный анализ: основы метода, техника выполнения измерений, практикум» разработана руководителем Учебного центра Общества с ограниченной ответственностью «Аналит Продактс» (далее – Общество) по согласованию с директором по научно-техническому развитию Общества. Настоящая образовательная программа утверждена генеральным директором Общества.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Нормативные документы для разработки дополнительной профессиональной программы повышения квалификации

Образовательная программа дополнительного профессионального образования повышения квалификации «Атомно-абсорбционный анализ: основы метода, техника выполнения измерений, практикум» разработана на основе следующих нормативных документов:

- Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- Приказ Министерства образования и науки Российской Федерации от 01.07.2013 № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам»;
- Приказ Министерства образования и науки Российской Федерации от 23.08.2017 № 816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;
- Квалификационный справочник должностей руководителей, специалистов и других служащих, утвержденным Постановлением Минтруда России от 21.08.1998 № 37.

Образовательная программа дополнительного профессионального образования повышения квалификации оформлена в соответствии с требованиями:

- ✓ статьи 12 Федерального закона «Об образовании в Российской Федерации».
- ✓ приказа Минобрнауки России от 01.07.2013 № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам».
- ✓ Приказ Министерства образования и науки Российской Федерации от 23.08.2017 № 816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ».

1.2. Цель повышения квалификации

Целью образовательной программы дополнительного профессионального образования – программы повышения квалификации является совершенствование и актуализация компетенций, необходимых для профессиональной деятельности в рамках имеющейся квалификации сотрудников исследовательских, производственных, аналитических, химико-аналитических, спектральных, хроматографических, ветеринарных лабораторий, специалистов в области аналитической химии, проводящих анализы и испытания, а также лиц, получающих среднее профессиональное образование и (или) высшее образование в данных отраслях науки, знакомство с новыми видами современных лабораторных исследований, инструментального химического анализа, и технологиями работы с ними, по следующим должностям, но не ограничиваясь:

- начальник исследовательской лаборатории (код 22016 ОК 016-94),
- начальник производственной лаборатории (код 24845 ОК 016-94),
- инженер-лаборант (код 22497 ОК 016-94),
- инженер (код 22446 ОК 016-94),
- научный сотрудник (код 24376, 24394, 24395, 24397 ОК 016-94),
- инженер-химик (код 22860 ОК 016-94),

- техник-лаборант (код 26999 ОК 016-94),
- лаборант (код 13265, 13269, 13271, 13306, 13312, 13319, 13321 ОК 016-94),
- инженер (код 22446, 42499 ОК 016-94),
- главный инженер (код 20755, 20758 ОК 016-94),
- инженер-лаборант (код 22497, 22602 ОК 016-94),
- инженер-технолог (код 22854 ОК 016-94),
- химик (код 27392 ОК 016-94),
- техник-метролог (техник по метрологии) (код 27012 ОК 016-94),
- инженер по охране окружающей среды (эколог) (код 22656 ОК 016-94)
- биохимик (код 20327 ОК 016-94),
- врач судебно-медицинский эксперт (код 20480 ОК 016-94).

Программа предназначена для дополнительного профессионального образования лиц, имеющих или получающих среднее профессиональное образование и (или) высшее образование.

1.3.Планируемые результаты освоения программы

Повышение квалификации работников, занимающих вышеперечисленные должности, направлено на совершенствование и актуализацию необходимых в их деятельности компетенций.

1. Общие компетенции:

• способность решать профессиональные задачи, проявлять инициативу, принимать оптимальные решения в повседневной деятельности и нестандартных ситуациях, нести за них ответственность.

2. Профессиональные компетенции:

- знать и уметь применять в профессиональной деятельности основы метода атомно-абсорбционного анализа.
- способность правильно и полно отражать результаты профессиональной деятельности при проведении анализов, получении и интерпретации результатов и проверки правильности измерений.

По результатам освоениям образовательной программы дополнительного профессионального образования — программы повышения квалификации «Атомно-абсорбционный анализ: основы метода, техника выполнения измерений, практикум» слушатели должны:

• знать основы теории и основные понятия атомно-абсорбционного анализа; области применения метода на практике; основные принципы выбора условий измерения; требования к используемым реактивам и расходным материалам; основные узлы оборудования, используемого для анализа; подходы к пробоподготовке образцов.

1.4. Форма обучения

Очная, с применением дистанционных образовательных технологий.

1.5. Нормативный срок освоения программы

Нормативный срок обучения — 3 учебных дня (24 академических часа) на базе полученного / получаемого высшего и (или) среднего профессионального образования.

Нормативный срок освоения программы: – 3 учебных дня (24 академических часа) из них:

- 12 лекционных часов,
- 6 час практические занятия;
- 4 час самостоятельная работа;
- 1 час консультации;
- 1 час итоговая аттестация.

Режим занятий: 4 лекционных часа и 2 часа практических занятий каждый день, по 2 часа самостоятельной работы в 1-ый и 2-ой день, по 1 часу для консультации и итоговой аттестации на 3-й день.

2. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ

2.1. Требования к условиям реализации программы

Образовательная деятельность обучающихся предусматривает следующие виды учебных занятий и учебных работ: лекции, практические и семинарские занятия, лабораторные работы, круглые столы, мастер-классы, мастерские, деловые игры, ролевые игры, тренинги, семинары по обмену опытом, выездные занятия, консультации, выполнение аттестационной, дипломной, проектной работы и другие виды учебных занятий и учебных работ, определенные учебным планом.

В случае применения дистанционных образовательных технологий предусматривается трансляция онлайн-лекций на одной из образовательных платформ. Слушатель имеет возможность участвовать в онлайн-лекциях, обсуждать с преподавателем материал лекции и задавать вопросы. Слушателям на период обучения обеспечивается доступ к записям всех онлайнлекций в рамках данного курса.

Для всех видов занятий академический час устанавливается продолжительностью 45 минут.

Освоение программы завершается итоговой аттестацией в форме тестовых заданий (в электронной форме).

Лицам, успешно освоившим программу повышения квалификации и прошедшим итоговую аттестацию, выдаются документы о квалификации – удостоверение о повышении квалификации.

2.2. Информационное обеспечение образовательного процесса

Для обучающихся по настоящей программе повышения квалификации подготовлены лекционные и учебно-методические материалы на электронном носителе.

3. УЧЕБНЫЙ ПЛАН

№ п/п	Наименование разделов и тем	Всего часов	Лекции
1.	Основы метода атомно абсорбционной спектрометрии (ААС).	2	2
	Общие понятия и специальные термины. Условия Уолша.		
	Закон Бугера-Ламберта-Бера.		
	Конструкция и основные узлы атомно-абсорбционного		
	спектрометра. Источники излучения. Оптическая схема		
	атомно-абсорбционного спектрометра.		
	Способы атомизации.		
2.	Пламенная атомизация. Спектральные помехи, физические и	4	2
	химические влияния и способы их устранения. Основные		
	ошибки, возникающие при работе с пламенным атомизатором		
3.	Системы коррекции фона в ААС.	4	2
	Электротермическая атомизация.		
4.	Основы пробоподготовки для ААС.	2	2
	Основные источники ошибок при проведении атомно-		
	абсорбционного анализа следов и ультра-следов элементов.		
5.	Метод генерации летучих гидридов и метод холодного пара.	3	1
	Определение As и Hg.	1	1
6.	Основные производители атомно-абсорбционного оборудования.	1	1
7.	Самостоятельная работа	4	-
	Консультация	1	-
Всего по курсу обучения		23	12
Итоговая аттестация		1	-
(в форме тестового задания)			
Итого:		24	

4. КАЛЕНДАРНЫЙ ГРАФИК УЧЕБНОГО ПРОЦЕССА

	1 день	2 день	3 день
Теоретические занятия	5	5	5
Практические занятия	2	2	2
Самостоятельная работа	1	1	-
Консультация	-	-	1
Итоговая аттестация (в форме тестового задания)	-	-	1
Всего: 24 часа	8	8	8

<u>5. СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНЫХ ПРЕДМЕТОВ, КУРСОВ, ДИСЦИПЛИН (МОДУЛЕЙ)</u>

5.1 Теоретические занятия

- Основы метода атомно абсорбционной спектрометрии (AAC). Общие понятия и специальные термины. Условия Уолша. Закон Бугера-Ламберта-Бера.
- Конструкция и основные узлы атомно-абсорбционного спектрометра. Источник излучения – ЛПК. Одно- и двухлучевая оптическая схема атомноабсорбционного спектрометра.
- Способы атомизации.
- Пламенная атомизация. Типы пламени и горелки. Требования, предъявляемые к пламени. Спектральные помехи, физические и химические влияния и способы их устранения.
- Системы коррекции фона в ААС.
- Электротермическая атомизация, кювета Львова, печь Массмана. Особенности ЭТА. Температурная программа, подбор оптимальных условий. Виды графитовых кювет и их использование.
- Помехи и влияния в атомно-абсорбционной спектроскопии с графитовой печью и способы их устранения. Химические модификаторы. Концепция STPF.
- Основы пробоподготовки для ААС.
- Основные источники ошибок при проведении атомно-абсорбционного анализа следов и ультра-следов элементов.
- Метод генерации гидридов для определения As, Se, Te, Sn, Bi и Sb. Метод холодного пара для определения Hg.
- Основные производители атомно-абсорбционного оборудования.

5.2 Практические занятия

- Работа с пламенным атомизатором. Количественное определение щелочных металлов (на примере Na, K). Влияние ионизационного буфера. Проверка правильности результатов методом разбавления, методом введено-найдено. Работа с пламенным атомизатором в режиме эмиссии.
- Работа с пламенным атомизатором в пламени C_2H_2 - N_2O (на примере Ti).
- Выбор типа графитовой кюветы. Смена графитовой кюветы. Настройка электротермического атомизатора. Подбор температурной программы. Использование модификатора и кювет с платформой. Количественное определение Cd, Pb, As в подготовленных образцах. Оценка правильности результатов анализа методом стандартных добавок.
- Основные ошибки, возникающие при работе с ЭТА.

- Определение содержания As с помощью приставки для генерации гидридов. Сравнение результатов определения As, полученных с помощью приставки для генерации гидридов и электротермического атомизатора.
- Определение содержания Нg с помощью приставки для генерации гидридов.
- 5.3 Самостоятельная работа с материалами курса
- 5.4 Консультация перед итоговой аттестацией
- 5.5 Проведение итоговой аттестации в форме тестовых заданий по результатам освоения образовательной программы

6. ФОРМА ИТОГОВОЙ АТТЕСТАЦИИ

Контроль успеваемости обучающихся по Образовательной программе дополнительного профессионального образования – программе повышения квалификации «Атомно-абсорбционный анализ: основы метода, техника выполнения измерений, практикум» – важнейшая форма контроля образовательной деятельности, включающая в себя целенаправленный систематический мониторинг освоения обучающимися программы повышения квалификации в целях:

- получения необходимой информации о выполнении обучающимися дополнительной профессиональной программы повышения квалификации;
- оценки уровня знаний, умений и приобретенных (усовершенствованных) обучающимися компетенций.

Итоговая аттестация проводится в соответствии с требованиями, установленными Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», приказом Минобрнауки России от 01.07.2013 № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам».

Освоение дополнительной профессиональной программы повышения квалификации завершается итоговой аттестацией (в форме тестового контроля в электронной форме).

К итоговой аттестации допускаются лица, выполнившие требования, предусмотренные курсом обучения по программе повышения квалификации и успешно прошедшие все промежуточные аттестационные испытания, предусмотренные учебным планом.

Итоговая аттестация проводится в сроки, предусмотренные учебным планом и календарным графиком учебного процесса.

Лицам, успешно освоившим программу повышения квалификации и прошедшим итоговую аттестацию, выдается документ о квалификации – удостоверение о повышении квалификации.

Лицам, не прошедшим итоговую аттестацию, а также лицам, освоившим часть программы повышения квалификации и (или) отчисленным в ходе освоения программы повышения квалификации, выдается сертификат об обучении или о периоде обучения.

7. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ -

Нормативные правовые акты:

- Конституция Российской Федерации (официальный текст). [Электронный ресурс]. URL:http://www.consultant.ru/.
- Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- Приказ Министерства образования и науки Российской Федерации от 01.07.2013 № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам»;
- Приказ Министерства образования и науки Российской Федерации от 23.08.2017 № 816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;
- Квалификационный справочник должностей руководителей, специалистов и других служащих, утвержденным Постановлением Минтруда России от 21.08.1998 № 37.

Основная литература:

- Б.В.Львов. Атомно-абсорбционный спектральный анализ. «Наука», М., 1966
- В.Славин. Атомно-абсорбционная спектроскопия. «Химия», Л., 1971
- В.Прайс. Аналитическая атомно-абсорбционная спектроскопия. «Мир», М., 1976
- И.Хавезов, Д.Цалев. Атомно-абсорбционный анализ. «Химия», Л., 1983
- С.К.Кюрегян. Атомный спектральный анализ нефтепродуктов. «Химия», М., 1985
- Ермаченко Л.А. Атомно-абсорбционный анализ в санитарно-гигиенических исследованиях. М., 1997
- Ермаченко Л.А., Ермаченко В.М. "Атомно-абсорбционный анализ с графитовой печью: Методическое пособие для практического использования в санитарногигиенических исследованиях" М.: ПАИМС, 1999.220 с
- А. Пупышев. Практический курс атомно-абсорбционного анализа, Екатеринбург, 2003
- В.И. Мосичев. Металлы и сплавы. Анализ и исследование. НПО «Профессионал», С-Пб, 2006
- А. Пупышев. Атомно-абсорбционный спектральный анализ. Мир химии. Техносфера М., 2009
- Ганеев А.А., Шолупов С.Е. и др., Атомно-абсорбционный анализ: учебное пособие, Лань, 2011

8. ОСНАЩЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

8.1 Очное обучение

Лекционные залы (учебные аудитории) КЦ «Петроконгресс», расположенные по адресу: г. Санкт-Петербург, ул. Лодейнопольская, д. 5, лит. А, 2 этаж, и оснащенные следующим оборудованием:

- ЖК панель Sony 46 1 шт.
- система звукоусиления встроенная 1 шт.
- микрофон Scnnheiser XS65 -1 шт.
- проектор 1 шт.;
- презентации по темам.

8.2 Очное обучение с применением дистанционных образовательных технологий

Помещение № 9.03 площадью 40 кв. м в ООО «Аналит Продактс», расположенное по адресу: г. Санкт-Петербург, В.О., 26-я линия д. 15 корп. 2,

- Плазменная панель LG 86UK6750 1 шт.;
- Ноутбук Dell 1 шт.;
- Вебкамера Logitech 1 шт;
- микрофон Scnnheiser XS65 -1 шт.;
- презентации по темам.

Каждому слушателю (обучающемуся) предоставляется лекционный и учебно-методический материал в электронном виде.

9.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

9.1.ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ ДЛЯ ИТОГОВОЙ АТТЕСТАЦИИ

- 1. Основные принципы, лежащие в основе атомно-абсорбционной спектрометрии. Закон Бугера-Ламберта-Бера. Условия Уолша.
- 2. Основные методы атомно-абсорбционной спектрометрии по типу атомизатора: пламя, графитовая печь, метод гидридов. Достоинства и недостатки.
- 3. Принципиальная схема и основные узлы атомно-абсорбционного спектрофотометра. Одно- и двухлучевая схема атомно-абсорбционного спектрофотометра.
- 4. Источники излучения, используемые в атомно-абсорбционной спектрометрии. Конструкция лампы с полым катодом. Принцип работы.
- 5. Пламенная атомизация. Требования, предъявляемые к пламени. Основные виды

- пламени, применяемые в атомно-абсорбционной спектрометрии, их характеристики. Горелки и требования, предъявляемые к конструкции горелки.

 6. Влияния при пламенном анализе: влияния при создании и переносе аэрозоля. Причины
- и способы их устранения.

 7. Спектральные влияния. Неселективное поглощение. Системы коррекции фона: дейтериевая коррекция, коррекция по самообращенной линии, коррекция на основе

Электротермическая атомизация. Конструкция и принцип работы атомизатора. Типы

- эффекта Зеемана. Достоинства и недостатки различных систем коррекции.

 8. Фотометрия пламени, как разновидность эмиссионного спектрального анализа.
- графитовых кювет.

 10. Основные стадии температурной программы при электротермической атомизации, и ее
- составление.
- 11. Химические влияния в ЭТА и способы их устранения. Модификаторы.
- 12. Концепция STPF максимальная правильность и чувствительность.
 13. Атомно-абсорбционной спектрометрия с генерацией гидридов. Образование гидридов.
- Схема генератора гидридов.
 14. Атомизация по методу «холодного пара».
 15. Пробоподготовка для атомно-абсорбционной спектрометрии. Правильность результатов анализа.